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Abstract. The relationship between software engineering practices and agile fundamentals are explored. The con-

tents of the Agile Manifesto state several principles such as a focus on working software, customer satisfaction, and 

simplicity among others. This paper explores how agile creates value at a fundamental level by introducing the 

capability for the organization to take continuously decisions, which are modelled as options. And how this addi-

tional value can be eroded by having deviation on classical software engineering parameters, such as Cost of Poor 

Quality or Phase Containment of errors.  

Additional focus on traditional software engineering best practices are proposed as the best way to achieve the 

benefits of the Agile paradigm is by combining it with mature engineering practices. Those practices are well known 

in the industry and academia. There are different sources that can be searched like SWEBOK and CMMI. As CMMI 

is organized in maturity levels the model can guide the engineering practices adoption. 
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1 Background 

Given the known problems of traditional software development such as massive delays, products that 

did not fulfill its purpose adequately after years of development and cost overruns, a group of pioneers 

thought of a radical paradigm shift. The traditional paradigm tries to establish the requirements compre-

hensively at the beginning of the project, whose duration is fixed, and then to estimate, based on the devel-

opment plan, the effort, the necessary resources, and the schedule to be fulfilled.  

There are multiple examples of failure, delays, and problems in such paradigm. In the new paradigm 

(Cockburn, 2007), as shown in Figure 1, a fixed time window is established, a small team of developers is 

organized and functionality is estimated, with the permanent help of the "owner" of the requirements 

providing the necessary sponsorship. 

Agile methods are based on values and principles that are expressed in the Agile Manifesto (Beck, et al., 

2001) (Duncan, 2019): 

“We are uncovering better ways of developing software by doing it and helping others do it. Through 

this work we have come to value:  

 
● Individuals and interactions over processes and tools 
● Working software over comprehensive documentation 
● Customer collaboration over contract negotiation 
● Responding to change over following a plan 

That is, while there is value in the items on the right, we value the items on the left more. " 

 
Figure 1 Agile conceptual modeling  (Morse, 2012) 
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The manifesto is complemented by 12 principles that highlight fundamentals such as customer integra-

tion in the development process, ownership by the entire team of everything that is produced, and a sus-

tainable pace of work. 

 

Agile implementation landscape 

 

Despite receiving XP most of the bibliographic attention, Organizations are increasingly focusing their 

attention on the agile methodology called SCRUM (Schwaber, et al., 2013), which addresses the  problem 

of the evolutionary development of applications; this problem represents a significant part of the resources 

of the software development industry, which explains much of the interest in this methodological approach. 

The SCRUM methodology is shown schematically by Figure 2. 

 
Figure 2 Agile (SCRUM) typical cycle (Schwaber, et al., 2013) 

The requirements to be developed, called "user stories", are divided into groups according to their rela-

tive priority and then implemented in cycles of relatively short duration with fixed allocation of effort (from 

two weeks up to two months but with preference to the shortest, using teams from four to eight members 

approximately) called "sprints". The tasks are organized in the team in such a way that the assignments and 

priorities are reviewed daily in a brief meeting called "daily scrum". In this approach, the main Manifesto 

criteria are followed by obtaining incremental partial releases of the product under development. Teams are 

encouraged to embrace a reduced set of metrics such as the velocity, amount of work the team can tackle at 

the end of the sprint, and some measure of the remaining backlog but little encouraging is made to collect, 

analyze and manage other metrics related to the process performance (Kunz, et al., 2008) and/or product 

quality. 

The evidence generated by industrial experience is consistent in showing that, by embracing the roadmap 

and committing the necessary investments to formally deploy the SCRUM  methodology, key aspects of 

the deployment of mature process practices are  addressed at the same time. 

In this sense, SCRUM has been successfully compared against the requirements to be met in order to 

achieve an evaluation under levels 2 and 3 of the reference model SEI-CMMI ™ (Alegrìa, et al., 2007)  

(Fritzche & Keil, 2007) (Shuterland, et al., 2008) (Turner, et al., 2002) (Glazer, et al., 2008) (Fritzche, et al., 

2007) demonstrating that rigorous execution satisfies most of the objectives necessary to obtain these lev-

els; the few process areas not directly covered, by not being required by SCRUM, are in practice a require-

ment for the correct performance of an organization dedicated to the construction of software, such as 

configuration management practices (Appleton, et al., 2005), which should be adopted anyway. Maller 
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(Maller, et al., 2004) discussed a map where the requirements for  an organization to operate at SEI-

CMMITM Level 5 can be achieved by using Agile in general and SCRUM in particular. Other authors high-

light the adaptations needed to perform SCRUM with geographically dispersed off-shore teams (Vishal, et 

al., 2007) (Banerjee, et al., 2011) (Sauer, 2005). Since then, practical experience in Argentina on several 

organizations achieving SEI-CMMI Level 5  using agile development as the main methodology has been 

fulfilled (Mendarozqueta, et al., 2014), all authors has been academically and professionally involved in 

such endeavor at different organizations. 

For the purposes of this paper, this experience provides the conceptual framework to assume that an 

organization that deploys SCRUM embraces most of the generic and specific practices required by levels 

2 and 3 of SEI-CMMI ™ (Marcal, et al., 2008), and therefore can aspire to its benefits. This factor is 

particularly attractive given the relatively low organizational effort and investment needed to deploy and 

institutionalize SCRUM compared with  other methodological alternatives. 

Organizations are then naturally willing to grasp the perceived value of performing software projects 

using agile methods in general and SCRUM in particular (Schwaber, et al., 2013). Mukker discussed some 

typical metrics obtained on evaluated projects (Mukker, et al., 2014) demonstrating ways to deploy excel-

lence and improvement paths into an existing SCRUM practice. However, the value might be elusive to 

obtain. The media reports a survey where an estimation that 12% of the projects fail completely and as 

much as 1/3 of them are unable to fulfill all the project expectations (Ismail, 2016) (Bhasin, 2012). Among 

the reasons geographical dispersion, culture issues, CIO’s ability to bring up the change into the organiza-

tion, lack of planning and architecture issues. About 2/3 of the project failures can be accounted to technical 

reasons and architecture mismatches. Miller (Miller, 2013),on a PMI sponsored conference, identifies as 

reasons for failure the lack of application of well-known disciplines, usually associated with Software En-

gineering best practices, driving projects into failure patterns usually associated with more traditional meth-

odologies; in particular, lack of backlog management, improper defect management, configuration man-

agement issues, and team skill deficiencies. It’s a matter of interest to preliminary explore strategies to 

avoid such project failures or to mitigate them into a healthier balance between available resources, calen-

dar, functionality delivered and projected value of the project. 

Although the bibliography shows consistent reports of success in the application of agile methodologies 

in general, and SCRUM in particular, to the solution of projects of different sizes and complexities, there 

are very few research efforts into addressing the evaluation of the value contributed by the methodology, 

being its application based primarily on intuition and obtained empirical results reported by the same or-

ganizations, especially in small and medium enterprises (Caballero, et al., 2011).  

Missing the value perspective into the management of a SCRUM effort might lead for causes of value 

destruction to creep excessively into the project, up and beyond the point where the value lost outweighs 

the value gained by the methodology. 

The contribution of this article is to explore factors contributing to value creation and destruction asso-

ciated with SCRUM, and proposing some necessary instruments to begin to address the research question 

on whether the use of SCRUM derives in greater value for the organization, as well as to explore the con-

ceptual reasons for what happens and some sensible ways to protect it. 

By validating the proposal through simulation it is also possible to suggest tentative values for the main 

parameters involved and to obtain the preliminary magnitude of the expected results. 

 

2 Systemic modeling of the Agile methodologies value 

In his landmark book (Weinberg, 1992), Gerald Weinberg states that a systemic view and system mod-

elling for software management and steering patterns, is needed for coping the traditional software devel-

opment problems.   

A previously developed model to explore the value of SCRUM (Colla, 2012) (Colla, 2016) will be 

adapted and used to preliminary assess the impact from the performance of process parameters usually 
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recommended by Software Engineering best practices such as the productivity, cost of poor quality, avoid-

ance of injecting value into defects and phase containment of errors. The assumption using to model this 

scenario is that the usage of SCRUM creates value thru two different, albeit complementary, mechanisms. 

The adoption of mature practices preserves the value of the project by minimizing deviation with the 

business scenarios in terms of cost and calendar. This aims to achieve the overall balance of income and 

expenditure as well as optimizing other organizational and intangible factors typically factored into the 

opportunity cost used to discount cash flows, in this way the value can be measured by using the Net Present 

Value (NPV) of the project flows. The analysis tries to grasp the value for the organization from an invest-

ment standpoint as it considers the cash flow and the risk to materialize them from an a-priori point of view.  

Simultaneously, the possibility to prioritize requirements over time in a way that enhances almost con-

tinuously the value proposition of the organization configures options, which can be valued using the Real 

Option Valuation methods (Brealey, et al., 2016) (Mun, 2002).  

 

 
Figure 3 Systemic cause-effect model diagram 

A systemic model has been adapted to study the problem discussed in this article (see Figure 3) from 

previous efforts (Colla, 2012) (Colla, 2016) to focus on system dependent variables of interest of the scope 

of this article and avoid the complexities of the full model. 

The overall relationship among systemic variables can be expressed as a cause-effect model such as the 

one seen in the Figure 3 where the two main contributors to the overall value, the Net Present Value (NPV) 

and the Option Price Value (OPV) are established as dependent variables of several independent variables 

defined by the industry and organizational context as well as the decisions taken and results obtained during 

the project execution. The cause-effect model used represent independent variables defined by the organi-

zation outside the scope of the model as hexagons, with circles organizational factors represented by some 

assumed distribution and with boxes intermediate variables with some systemic relation with the rest. Fi-

nally, the target utility result is represented as a diamond. 
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The factors used and the relations assumed on the model will be explained with further detail in the 

following sections. 

2.1 Net present value of the project 

The requirements flow (Rt), assumed as independent from the project and defined by the organization 

context, operational definitions and strategical plans, are subject to a size (Size) evaluation; a suitable 

method can be used in this evaluation to capture both extension and complexity (Matson, et al., 1994) 

(Hummel, et al., 2013). SCRUM teams usually use story points with similar purposes (Mahnic, 2012). 

Typically, the technology used, the business complexity, the tools involved and the detailed technical meth-

odologies used configures an organizational productivity () which can then be used to estimate the overall 

project effort (E) needed to satisfy all requirements of a given scope. The productivity is strongly related to 

the level of performance maturity exhibited by the organization, which is measured by using the SEI-

CMMITM reference model (Clark, 2000). The organization decides then on the staff (Staff) which would 

allocate to address the requirements and the typically fixed extension of the sprints (ts). With this infor-

mation, the number of sprints (N) and the maximum effort (Ei) of each one can be planned. 

A suitable correlation between story points, the standard size and complexity measurement used in 

SCRUM planning, and size is assumed to be computed by statistical methods. The CMMI level (CMMI) is 

factored then as an organizational decision on the level of maturity to operate which will influence most of 

the process performance factors. For the purposes of this work, it’s assumed that the proper usage of the 

SCRUM methodology levels the organization with a maturity equivalent to SEI-CMMITM level 3. 

Once a given sprint is started as much technical effort (Et) as possible is allocated to transform require-

ments into actual code. This amount is limited by several factors though, for a given technical context, the 

organization would generate errors as the code is written which will be identified as defects when the code 

is tested, a proportion of the effort needed to rework can be given by the organizational cost of poor quality 

(CoPQ), which is a factor capturing which proportion of the technical effort is actually applied rework effort 

(Ecopq), Knox (Knox, 1993) discussed a strong correlation between the increase in the maturity level as 

measured by the SEI-CMM TM model (Humphrey, 1989), (Team, 2010) and the reduction of this factor.  

Variations between planned and actuals can be evaluated using the ratio between both for schedule and 

cost, named schedule performance index (SPI) and cost performance index (CPI), which are typical project 

management measurements. Both values go below  one when actuals are smaller than the plan (usually a 

good condition) and above one when otherwise (usually a condition to avoid). Lawlis (Lawlis, et al., 1995)  

studied the correlation between the maturity level of an organization, also measured using the SEI-CMM 

level, and the distribution of both the SPI and CPI. The distribution goes closer to the unity and less disperse 

as the organization maturity goes higher meaning that, as the organization operates on a more mature way, 

it’s less likely to miss the project planning parameters.  

The usage of SEI-CMMI (TM) is used with the purpose of seizing the results of applying sound Software 

Engineering practices, the SEI-CMMI (TM) model can be used by an organization as a roadmap to implement 

them and grasping the benefits in terms of maturity, without necessarily embrace a formal assessment 

roadmap. 

Therefore, as estimated and actual technical effort vary, additional effort variations (Ecpi) needs to be 

accounted for. As the team size is fixed, the amount of effort available (Ei) on a given sprint is fixed and 

quite inflexible, so essentially, all unexpected factors erode from the team capacity to deliver actual tech-

nical work. Therefore, as the sprint is finished, the planned scope of technical work might not be completed 

and pending rework is left to be satisfied at some future sprint. All effort estimated to complete the planned 

scope and execute the identified rework and other activities carried over future sprints is called the technical 

debt (Etd) of the process; and it is assumed that it represents prioritized business requirements that need to 

be added to the backlog and addressed at the earliest opportunity. Two additional factors need to be ac-

counted for. In one hand, the capability of the team to spot all defects is limited by the methodologies used; 

the maturity level of the organization as measured by the SEI-CMMITM  (Team, 2010) model is reported to 

significantly improve this capability (Goldenson, et al., 2006) (Hallowell, D.L., 2003)but it never achieves 

100% of all defects A factor named phase containment of errors (PCE) can help to identify the proportions 

of defects which can be identified as part of the normal verification and validation activities of a given 
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cycle. This concept, which is part of the management of life cycle models in classical Software Engineering, 

is also applicable to SCRUM. Although the notion of a phase might seem strange in the context of an agile, 

continuous, lifecycle, a factor equivalent to PCE is introduced, which is sometimes called iteration con-

tainment effectiveness (ICE) as identified by Sandu and Salceanu (Sandu, et al., 2018). This factor reflects 

the fact that, in any given sprint, in addition to the faults detected and solved within the sprint, there are 

defects that were introduced in previous sprints and remain undetected till a future sprint.  For the remaining 

of this paper, we will keep the classical PCE denomination for the sake of clarity. Therefore, the defects 

that are passed undetected from one sprint to the following ones would eventually need to be addressed at 

a greater cost, modelled as a cost increase factor (K), that if were detected in the same cycle where they 

were introduced, following a classical value model, would have added to the defect waste (Vijay, et al., 

2014), the effort required is considered in the model as the effort to address escaped defects (Epce). Lee & 

Xia investigated (Lee, et al., 2010) some of the relationships among different factors which are used to 

perform an initial calibration of the model. Finally, the extra effort introduced by different venues would 

require the organization to either cut the original scope or to extend the project. Assuming the latter, addi-

tional planning effort (Ep) will be needed to perform additional ceremonies related to the prioritization of 

the backlog for the additional sprints introduced to complete the scope originally planned with the planned 

level of defects. For any given sprint, the total fixed sprint effort would then represent the equilibrium of 

all factors with any excess effort to be added at the next sprint as technical debt to be addressed as given 

by Ec. 1 which represents the sum of all aspects requiring effort application during a given SCRUM cycle. 

 
𝐸𝑖 = 𝐸𝑡 + 𝐸𝑐𝑜𝑝𝑞 + 𝐸𝑐𝑝𝑖 + 𝐸𝑝 + 𝐸𝑝𝑐𝑒 + 𝐸𝑡𝑑 

Ec. 1 

In general terms, only the technical effort adds value to the business, as it transforms requirements into 

code, delivering value for the organization when executed. Therefore, the rest of the terms, no matter how 

necessary they are, can be assumed as destroying value and a good management practice would be to elim-

inate them, and if not possible, to substantially reduce its amount to the minimum. The overall cost of the 

project would be the aggregation of the costs of each sprint at its finalization calendar (ti), typically meas-

ured from the start of the project to help account for financial evaluations. As the value fades away when 

pushed into the future, because of financial considerations it can be transferred to the start of the project as 

the present value of the cost (CPV) which is obtained by discounting the resulting cash flows involved at 

each sprint by the opportunity cost (r) which represent both the time premium and the risk premium in 

equilibrium for the nature of the organization’s operating context at as given by Ec. 2 which is just the cash 

flow produced by the effort expended on a given SCRUM cycle discounted at the opportunity cost used by 

the organization (Brealey, et al., 2016): 

𝐶𝑃𝑉 = ∑
𝐶𝑃𝐸 × 𝐸𝑖

(1 + 𝑟)𝑡𝑖

𝑛

𝑖=1

 

Ec. 2 

The average cost per engineer (CPE) is assumed constant for an organization and used as a suitable 

conversion factor between effort and cash flows, assuming the majority of the costs are directly driven by 

the manpower, which usually is the case. 

To factor the project results, the expected business return after the implementation is also needed. This 

value is very hard to model because it might contain both tangible and non-tangible factors, however the 

organization should be assumed to be using a rational decision process, and, as such, it would expect a 

present value of the business results to equal or exceed those of the costs, perhaps with some investment 

premium (G%), so referring all values to the start of the project using the present values the net present 

value (NPV) is obtained as Ec. 3 which is a resort to express the net present value of the project without 

discussing the complexities of the different business models from the income perspective retaining the 

perspective of the cost expenditure perspective only. 
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𝑁𝑃𝑉 = (1 + 𝐺%)𝐶𝑃𝑉 − 𝐶𝑃𝑉 = 𝐺%𝐶𝑃𝑉 
Ec. 3 

In the extreme, which is the present value of expenditures and income to be equal, the condition NPV=0 

is obtained and can be considered as the equilibrium for the project to be financially viable and therefore 

interesting for the organization. 

2.2 Real Option Value of the project 

Options are financial instruments which attempts to capture the value obtained from retaining the right 

to defer decisions for a later moment; those decisions might be to continue, alter, or abandon a given in-

vestment; the value of the options is increased when the project is performed under uncertainty of the out-

come of one or more factors driving the results; the options then model the inherent value of retaining the 

possibility to alter the project outcome by managing the factors and taking decisions while the associated 

activities evolve. Options are typically defined by the initial value (spot price), the exercise value (strike 

price), the option class (European or American styles), and their finalization schedule. The pure financial 

instrument can be associated to actual projects applied outside a financial context, in this case are called 

real options and allow to defer decisions on a project, implying to abandon, grow, reduce, contract or per-

form management decisions in general. Either class options are valuable when uncertainty exists and, as a 

result of it, the outcome of the project might vary.  

The option value differs from the inherent risk associated with an operation, which is best captured by 

the opportunity cost at which the organization discount their cash flows (Hung, et al., 2010), therefore, 

when the uncertainty is eliminated, the value of the option converges to zero, and the global value of the 

project becomes the one predicted by the net present value. 

Black & Scholes (Black, et al., 1973) proposed a model to evaluate the value yield of an option; this 

method is best used on financial applications but can be extended to any kind of project. The model as-

sumptions derive on it to be best suited to evaluate a continuous decision process where actions can be 

taken at any arbitrary continuous timeframe. When the decisions can be taken at discrete intervals, such at 

the end of each sprint in the case of SCRUM, the Lattice method (Mun, 2002) is preferred; the analysis 

performed can be seen at Figure 4 

 

 
Figure 4 Binary decision tree (Lattice frame) 

The option pricing value (OPV), which is the value of the option, is computed recursively and represents 

the total value added to the project by the management performed during the execution. To compute it, a 

binary tree is created starting from an initial stage (S0), and branching as each decision can be taken, the 

overall project then can be visualized as a given trajectory within the tree. In the case of SCRUM, each 

node can be assimilated as the planning ceremonies at the start of each sprint where the priorities of the 

activities to be made are based on the updated business context. At each node a decision might push an 

“ascendant” (u) trajectory or a “descendent” (d) one, representing the values associated with success or 

failure. At each node the ascendant or descendent values can be obtained by Ec. 4,Ec. 5,Ec. 6,Ec. 7 and Ec. 
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𝑆𝑖+1
𝑢 = 𝑢. 𝑆𝑖 

Ec. 4 

𝑆𝑖+1
𝑑 = 𝑑. 𝑆𝑖 

Ec. 5 

𝑢 = 𝑒𝜎√𝛿𝑡 
Ec. 6 

𝑑 = 𝑒−𝜎√𝛿𝑡 =
1

𝑢
 

Ec. 7 

𝑝 =
𝑒𝑟𝑓𝛿𝑡 − 𝑑

𝑢 − 𝑑
 

Ec. 8 

The Lattice methodology to evaluate the price of a Real Option Value is standard, due to space re-

strictions it will not  be reproduced here, and  can be reviewed at the bibliography (Mun, 2002). 

The discrete time interval (δt) is the time between successive opportunities to exercise the option or in 

general to define a course of action. The risk free discount rate (rf) is the time premium component of the 

opportunity cost and the process volatility (σ) is a non-dimensional magnitude representing the uncertainty 

surrounding the project outcome, a previous research effort suggested a preliminary value for this magni-

tude at typical software development projects which will be used in this model effort (Colla, 2012). 

Once the exploration of all the nodes of the tree is computed, in a process called  forward propagation, 

the tree is traversed in opposite direction in a process called retro propagation, where residual values (Vi) 

at each decision node at the end of the project are computed by the Ec. 9  

 

𝑉𝑛−1 = 𝑆𝑛 − 𝑆0                 ∀ 𝑆𝑛 − 𝑆0  ≥ 0  
𝑎𝑛𝑑 

𝑉𝑛−1 =  0                           ∀ 𝑆𝑛 − 𝑆0 < 0 

 
Ec. 9 

 The residual value of each node is computed recursively by traversing backward to all the rest of the 

nodes including the root (i=0) by using Ec. 10 

 

𝑉𝑖−1 = (𝑝𝑉𝑖
𝑢 + (1 − 𝑝)𝑉𝑖

𝑑)𝑒−𝑟𝑓𝛿𝑡 
Ec. 10 

The residual value of the root node (V0) obtained at the end of the computation is the Option Price Value 

(OPV) representing the value added to the project by the real options made available by the methodology. 

As typically the OPV would be positive, this can be interpreted as the SCRUM methodology (Rico, 2008) 

performing at the enabling factor to obtain additional value by introducing decisions opportunities at each 

sprint, and therefore, allowing to evaluate the opportunity to abandon, execute, or modify at a later time the 

decisions regarding a given requirement. The value created thru this mechanism can be added to the overall 

value of the project as originated by the SCRUM approach, then, the extended value of the project (eNPV) 

might be computed as Ec. 11 

𝑒𝑁𝑃𝑉 = 𝑁𝑃𝑉 + 𝑂𝑃𝑉 
Ec. 11 

2.3 Model evaluation 
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In order to take into account the complex factor interaction on a given sprint and the value coupling of 

different sprints, the results of the model at Figure 3 can be approximated by using Monte-Carlo based 

discrete simulation techniques. The strategy to implement the model would consider the external and pro-

cess-dependent factors as random variables obeying an assumed distribution. The results distribution of the 

target variables can be observed, a qualitative behavior inferred and relations between factors observed and 

interpreted. The utility function used is the extended value of the project (eNPV). Then, the dependency of 

the outcome with factors which the bibliography considers as subjects to be managed by the application of 

Software Engineering best practices is of particular interest of this work, and therefore the correlation 

among them is inspected with further detail. As such, the influence of the cost of poor quality, phase con-

tainment of errors, the additional effort needed to fix escaped defects, the productivity and the planning 

efficiency are evaluation targets. Other external factors that influence the outcome of the target variables 

such as Cost per Engineer, opportunity cost or risk-free discount values are assumed as some fair average 

value to avoid interferences from factors outside the scope of the development project management and 

thus being of no immediate interest for the analysis. The values of the dataset used can be seen in Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The simulation dataset are extracted from the review of the cases discussed at the bibliography and supple-

mented by metric baselines at organizations or projects where the authors has been involved. Based on such 

experiences, the values sound as reasonably representative of a typical development organization. However, 

other organizations can apply the same model with their own metric baselines to validate the applicability 

of results and conclusions to their environment. 

Several simulation runs are performed using 1000 trials each, a typical outcome of a run produces the results 

seen at Figure 5 where the degree of influence of several modeled variables over  the target utility function 

is analyzed.  

 

Parameter Sym UM Min 
Me-

dian Max 

Size S FP 100 300 400 

Productivity [Baseline]  Hours/FP 10 12 14 

CoPQ[%] Baseline CoPQ%   5 17 30 

PCE Baseline PCE%   70 80 95 

Cost increase factor K   1 2 3 

Planning Effort [%] Baseline P%   2 5 10 

Sprint cycle time ts Weeks 2 4 6 

Cost Performance Index CPI   0,95 0,99 1,1 

Table 1 Simulation parameters. All distributions assumed triangular unless noted otherwise. Team Size=8,Cost per 
Engineer=USD 18/hour, Opportunity cost=10% (yearly), Risk Free Cost=1% (yearly), Investment Margin=10%,Un-
certainty Factor=0.12. Size expressed as Function Points (FP). All distributions extracted from bibliographic references 
corresponding to a maturity level equivalent to SEI-CMMITM level 3. 
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Figure 5 Sensitivity of total value with manageable 
factors and influence of main contributors 

 

 

The main contributor to explain the variation of the project extended value is the cost of poor quality mag-

nitude (lower better), followed by the phase containment of errors (higher better). The cost increase factor 

(K) experienced by repairing defects outside of the sprint (lower better), and the size/complexity of the 

project (lower better), are listed as relevant contributors. Other variables are observed as well with a lesser 

contribution to the project performance. From the two main contributors, a variation sensitivity analysis 

can also be seen at Figure 5. The higher the value of the cost of poor quality proportion within the evaluated 

range, the bigger the outcome is eroded. Conversely, the lower the value of the phase containment of errors 

within the evaluated range, the higher is the impact into the value delivered. 

2.4 Results interpretation 

 

The identified contributors to the project extended value can be interpreted, if being on the zone of lower 

contribution, as net value destruction factors; the most relevant being the Cost of Poor Quality followed by 

the PCE and the cost increase factor K.  

The SCRUM value model used as a reference from previous work is by itself an original piece of work 

in the exploration of possible sources of value from the usage of agile methodologies at large; therefore the 

adaptation to study the value eroded under the common configuration of technical debts is preliminary 

assessed by the authors as sound. Furthermore, the conclusions obtained in this work are both consistent 

with previous usages of the model, and with the practical experience of the authors on a wide variety of 

projects of different size, industries, technologies involved and complexities.  

The additional value provided by the agile methodology, as compared with more classical life cycle 

methodologies, protects the value of the project to be positive to the organization by providing a larger 

buffer for value erosion.  

This can be seen as a qualitative confirmation on the reason why organizations prefer agile over other 

methods.  

However, if no attention is paid to structural process variables, eventually, the value is eroded to a point 

that, even with the added value of agile methodologies, the results turn against the organization. The simu-

lation suggests the CoPQ can be in the neighbor of 18% as the upper acceptable limit, and 80% as the lower 

limit for PCE. Those values are very closer to figures reported by the bibliography (Sandu, et al., 2018) as 

obtained on successful typical agile projects; therefore, even minimal deviations might push the project 

beyond profitability. 
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2.5 Model threats to validity 

 

Effort has been made to verify and validate the model implementation and execution along with the 

recommendations made by Sargent (Sargent, 2009). Despite the foundation of the modeling effort being 

based on previous work, the results need to be considered as preliminary and just with the purpose of gain 

some initial understanding of the dynamic behavior of the variables involved. Little assumptions have been 

made over the possible values and distributions of the different variables, those selected are either gathered 

from the available bibliography, previous modeling efforts, baselines obtained from projects where the 

authors were involved, and professional judgment about typical values present at projects found in the 

industry. Further refinement of the relations and values used, needs to be pursued as part of future activities. 

The base model can be executed with other organizational metric baselines to explore possible outcomes 

for a different context. 

3 Best practices and lessons learned 

The results shown by the simulation, although preliminary, seem to be pretty consistent with the practical 

experience of the authors in real-world projects of different sizes and complexities where, more often than 

not, the technical debt increases with the successive sprints eroding customer trust in the new features 

incrementally delivered, generating schedule overruns at product level, and forcing to add extra effort, and 

hence cost, in the form of additional sprints whose backlog is mainly composed of defect-correction stories. 

This kind of situation is against some of the Agile principles, first and foremost the one that states that “Our 

highest priority is to satisfy the customer through early and continuous delivery of valuable software”. The 

value of the software is put in question and could actually be destroyed if defects at product-level increase 

beyond acceptable thresholds. In addition to that, the effort consumed by sprints devoted to defect correc-

tion stories are essentially waste, contradicting therefore the Agile principle that states that “Simplicity – 

the art of maximizing the amount of work not done, is essential”. Author´s experience shows that, in order 

to fulfill at product level the Agile principle that “working software is the primary measure of progress”, 

certain practices and metrics borrowed from the plan-driven software engineering processes may be rele-

vant.  

In terms of instruments, ways and means to protect value, what the experience shows and the results of the 

simulation preliminary confirm is that, by large, the Cost of Poor Quality is the main driver in terms of 

value erosion all along the development cycle of actual software products, especially considering that a 

typical development cycle normally takes a significant number of sprints. This result is aligned with the 

classical principle that states, that the cost of fixing a bug increases exponentially trough the development 

process (Software Defect Reduction Top 10 List, 2001). The second driver in importance is the capability 

to detect and correct errors in the sprint where they were introduced, which is measured by the PCE metric. 

Having identified these two factors empirically through extensive industrial experience, and having seen 

the consistency with the preliminary results generated by the proposed model, the recommendation at this 

point could be to plan for acceptable ranges for CoPQ and PCE at product level, in the same manner as the 

backlog is planned, and distribute these figures as partial budgets assigned to successive sprints. At the time 

of executing the planned sprints, as part of the retrospective, the actual values shall be compared with the 

planned ones to grasp early enough if the scrum team is in the right track to deliver “working software” or 

if corrective measures shall be taken, as part of the planning of the forthcoming sprint, before value is 

destroyed at the product level by the same process that is supposed to create it. The authors believe that the 

definition and collection of such metrics shall be as agile as the rest of the process, for example identifying 

the stories where defects from previous sprints need to be corrected and deriving PCE from them, and 

considering the story points of the backlog devoted to defect correction stories as a measure of CoPQ. In 

the same manner, as a burndown chart is kept and used as a measure of progress, curves of planned vs 

actuals of PCE and CoPQ could be kept and used as key elements for product release decisions and for 

appropriate planning of successive sprints. 
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4 Future work 

Further work is needed to validate the model and the proposed practices using data from actual projects. A 

possible line of work could be to take a small to medium-size project, implement the definition, collection 

and analysis of the CoPQ and PCE metrics as part of the sprint ceremonies, trying to identify, by means of 

the model, when value is being created and when is being destroyed, establishing early warning thresholds 

for the scrum team to take actions. The results, in terms of product defects and development costs, could 

then be compared with those of similar projects that have not introduced these practices 
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